
ORBIFOLDS AND COMMENSURABILITY

G. S. WALSH

Abstract. These are notes based on a series of talks that the author gave at the “Interactions

between hyperbolic geometry and quantum groups” conference held at Columbia University in

June of 2009. We describe the structure of orbifolds, and show that they are very useful in the

study of commensurability classes. We also survey some recent results in the area.

1. Background on hyperbolic manifolds and orbifolds

In understanding manifolds and their commensurability classes, we will find it extremely helpful
to employ orbifolds. A manifold is an object locally modeled on open sets in Rn, and an orbifold
O is locally modeled on open sets in Rn modulo finite groups of Euclidean isometries. That
is, each point x ∈ O has a neighborhood modeled on Ũ/G, where G is a finite subgroup of
SO(n) and Ũ is an open ball in Rn. A geometric orbifold is the quotient of a simply connected
Riemannian manifold X by a discrete subgroup Γ of Isom(X), and we say that O = X/Γ is
an X-orbifold. In this case the orbifold fundamental group is the group Γ. There are non-
geometric orbifolds, but we will only be concerned with geometric ones here. We will describe
the structure of orbifolds through some examples, see [5] for a good description of the details.

1: The “football” is an S2-orbifold which is the quotient of the S2 by the group Z/3Z
generated by a rotation of 2π/3 which fixes the north and south poles. The ramification
locus of an orbifold O is the set of points where any neighborhood is modeled on an
open set in Rn modulo a non-trivial group. The ramification locus in this case is two
points, which we label 3, since that is the order of the local group. The underlying space
|O| of an orbifold O is the space obtained from O by forgetting the orbifold structure,
which is S2 in this case. The two ramification points are both modeled on disks in R2

modulo a group of rotations, and we call these cone points. The football is commonly
denoted as S2(3, 3). In general, M2(r1, ...rn) is a 2-orbifold with underlying space the
2-manifold M2 and n cone points of orders ri.

2: A common Euclidean orbifold is S2(2, 2, 2, 2), which is the quotient of R2 by the group
generated by the translations (x, y) → (x + 1, y), (x, y) → (x, y + 1) and rotation by
π about (0, 1/2). Note that this will generate rotations by π in all half-integer lattice
points. Exercise: What is a fundamental domain? Find a rotation of order 4 on R2 such
that the group generated by this rotation and the above generators yields the orbifold
S2(2, 4, 4).

An orbifold covering f : Q′ → Q is a continuous map between the underlying spaces |Q′| → |Q|.
We further require that if a point x ∈ |Q| has a neighborhood whose orbifold structure is
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U = Ũ/G then each component Vi of f−1(U) is isomorphic to Ũ/Gi where Gi < G and
f |Vi : Vi → U is Ũ/Gi → Ũ/G. See [5, Section 2.3] for elaboration. Example 1 above gives a
cover of S2(3, 3) by S2, and example 2 gives a cover of S2(2, 4, 4) by S2(2, 2, 2, 2). Note that
S2(2, 4, 4) also covers itself with non-trivial degree.

3: We regard hyperbolic 2-space H2 as the upper-half-space {z|Im(z) > 0} of the complex
plane and declare Isom+(H2) to be PSL(2,R), where the matrix

(
a b
c d

)
acts by z → az+b

cz+d .
Then the group generated by

(
2 1
1 1

)
and

(
1 1
1 2

)
is a free group of rank 2. The quotient of

H2 by this group is a punctured torus. If we add a generator that rotates by π about i,(
0 1
−1 0

)
, the quotient orbifold is S2(2, 2, 2,∞) (the∞ denotes a cusp). This is a quotient

of the punctured torus by an involution which fixes three points on the punctured torus
and takes the puncture to itself. It is perhaps easier to understand the quotient by
considering the induced action on the unit disk. Use the transformation U(z) = zi+1

z+i

to take the upper-half space to the unit disk. Then the rotation by π about i becomes
rotation by π about the origin. This illustrates S2(2, 2, 2,∞) as a hyperbolic 2-orbifold.

Here we will mainly consider hyperbolic 3-orbifolds. These are the quotient of H3 (regarded
as {(z, t)|z ∈ C, t ∈ R, t > 0}) by a discrete finitely generated subgroup of Isom+(H3) ∼=
PSL(2,C). As above, PSL(2,C) acts on the complex plane {(z, 0), z ∈ C} such that

(
a b
c d

)
acts

by z → az+b
cz+d . The action on H3 is by Poincaré extension, where hemispheres perpendicular

to the complex plane are mapped to hemispheres perpendicular to the complex plane. (See
[14, Chapter 1].) Volume will be discussed in other lectures here, but for our purposes all
subgroups of PSL(2,C) will be discrete and have finite co-volume, meaning that the quotient is
a finite-volume hyperbolic orbifold. A discrete subgroup of PSL(2,C) is called a Kleinian group.
Let Γ1 and Γ2 be two finite co-volume Kleinian groups. Mostow-Prasad rigidity states that if
Γ1 and Γ2 are isomorphic, then they are conjugate. This means that if O1 and O2 are finite
volume hyperbolic orbifolds H3/Γ1 and H3/Γ2, then any isomorphism of their fundamental
groups is determined by a unique isometry of the hyperbolic orbifolds. Therefore, invariants
which depend only on the conjugacy class of the representation of the fundamental group into
PSL(2,C) are topological invariants. We will describe two here, the trace field and the cusp
field. Others are discussed in Section 2.

Let H3/Γ be a hyperbolic orbifold. Then the field generated by the traces of elements in Γ is
invariant under conjugation of Γ and this is the trace field of Γ. If there is a subgroup of Γ
which fixes some point on the sphere at infinity, S2

∞ = C ∪∞, then we can conjugate so that
this subgroup fixes ∞. Then the quotient of the plane {(z, ε)|z ∈ C} in H3 will be a Euclidean
2-orbifold Q in H3/Γ for some ε, and we call the quotient a cusp cross-section. The quotient
of {(z, t)|t > ε} is Q2 × R+ and we call this a cusp. If the cusp cross-section is a torus, we can
conjugate so that the generators are

(
1 1
0 1

)
and

(
1 g
0 1

)
. The cusp field of the cusp is Q(g). Note

that g coincides with the shape of the torus in the identification of the Teichmuller space of T 2

with upper half-space. If the cusp-cross section is a compact Euclidean orbifold which is not a
manifold, then we take a cover of H3/Γ where this cusp cross-section lifts to a torus and take
the cusp field of some cusp in the pre-image. Using a geometrical interpretation of the invariant
trace field, one can show that the cusp field is a sub-field of the invariant trace field, see [13,
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Section 5.5]. Furthermore, the invariant trace field is just the trace field for knot complements
[17]. Note that the cusp field of a particular cusp is left unchanged after taking finite covers.

4: The figure-8 knot complement can be realized as a hyperbolic manifold H3/Γk where
Γk is generated by

(
1 1
0 1

)
and

(
1 0
−w 1

)
, where w = −1+

√
3i

2 . (This is not obvious, see
Thurston’s notes [20, Section 4.3].) There is a subgroup Z ⊕ Z which fixes infinity
generated by

(
1 1
0 1

)
and

(
1 g
0 1

)
where g = 2 + 4

√
−3. Then the cusp field is Q(

√
−3) and

the trace field is also Q(
√
−3). For most, (but not all!) hyperbolic knots in S3 the trace

field is the same as the cusp field of the unique cusp.

Question 1.1. (See [16].) What are necessary or sufficient conditions for a hyperbolic knot
complement to have its trace field strictly larger than its cusp field? Currently, there are four
knots known that have this property, the two dodecahedral knots of Aitchison and Rubinstein,
12n706 (discovered by D. Boyd) and 15n132539 (discovered by N. Dunfield). See [16, 8, 3].

A knot K in S3 is strongly invertible if there is an order two involution t of (S3,K) such that
the fixed point set of t intersects the knot twice. A strong involution induces an order two
involution on the knot complement where the fixed point set intersects each cusp cross-section
4 times. The figure-8 knot is strongly invertible and we can take the quotient of the figure-8
knot complement by the strong inversion to obtain an hyperbolic 3-orbifold. This corresponds
to adjoining the element τ =

(
i 0
0 −i

)
to the group Γk in example 4 above. Note the action of τ

on the cusp subgroup yields a cusp S2(2, 2, 2, 2). Also, τ takes each generator of the knot group
to its inverse.

Let K be a strongly invertible hyperbolic knot. The quotient of S3 by a strong inversion is
S3 with an unknotted circle labeled two. The quotient of N(K), a regular neighborhood of
the knot, is a ball with two unknotted arcs labeled 2. Therefore, the quotient of S3 \ N(K)
by the inversion has underlying space a ball and two arcs of the ramification locus which are
both labeled two. All of the information about this orbifold is contained in the ramification
locus, since its underlying space is topologically trivial. This orbifold is the minimal orbifold in
the commensurability class when the S3 \K is non-arithmetic, the strong inversion is the only
symmetry, and K does not admit hidden symmetries, see Sections 2 and 3 below.

2. Commensurability

Definition 2.1. Two orbifolds are commensurable if they admit homeomorphic finite-sheeted
covers.

We will require that the homeomorphisms are orientation-preserving. Accordingly, we consider
the commensurator C+(Γ) to be a subgroup PSL(2,C) in Definition 2.2 below. We claim
that the relation ∼ on n-dimensional orbifolds defined by commensurability is an equivalence
relation. Indeed, clearly O ∼ O, and if O ∼ P, P ∼ O. Now assume that O ∼ S with a
common finite index cover X, and S ∼ P with common finite index cover Y , so that X and Y
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both cover S. To show O ∼ P, we will construct a finite index orbifold cover of X and Y . This
is the orbifold fibered product X ×S Y :

X ×S Y

↙ ↘
X Y

↙ ↘ ↙ ↘
O S P

Let f : X → S and g : Y → S be orbifold covering maps. Then each point w ∈ S has a
neighborhood Uw = Ũ/G such that a pre-image of Uw in X, respectively Y , has the form
Ũ/G1, respectively Ũ/G2 for some Gi < G. It is helpful to think of Ũ/G as the set of orbits
{Gy|y ∈ Ũ}. We define fg : Ũ → Ũ/G1 × Ũ/G2 by fg(y) = (G1gy,G2y). This map factors
through Ũ/(g−1G1g ∩ G2) since y and xy where x ∈ g−1G1g ∩ G2 have the same image. We
get maps from Ũ/(g−1G1g ∩ G2) to Ũ/Gi by composing fg with the projections. Thus we
define the fiber product of Ũ/G1 and Ũ/G2 over Ũ/G as the disjoint union of the orbifolds
Ũ/(g−1G1g ∩G2) where g is taken over representatives of the double cosets of G1\G/G2. (The
map fg1gg2 differs from fg only by the action of G on Ũ .) We can patch these neighborhoods
together to get an orbifold which covers X and Y . See [20, Section 13.2] for an example of
why this is the correct way to extend the definition of the fibered product for manifolds. This
exhibits X ×S Y as an orbifold cover of O, S, and P so ∼ is transitive which shows the claim.

Aside from the intrinsic reason that this equivalence relation is a method of organizing mani-
folds, there are many reasons to study commensurability classes. In particular, there are lots of
properties which are preserved by commensurability. For example, if a manifold X is virtually
fibered, and Y is commensurable with X, then Y is also virtually fibered. This is because a
cover of a manifold which fibers over the circle fibers over the circle. Similarly, the properties
of being virtually Haken, having fundamental group containing a subgroup which maps onto a
free group of rank at least two, and containing an immersed geodesic surface are all properties
of the commensurability class. In addition, if we restrict ourselves to 3-manifolds which ad-
mit a finite-volume geometry, this equivalence relation on 3-manifolds preserves the geometric
type. Thus we can regard commensurability classes of geometric 3-manifolds as a refinement
of geometrization. This is more useful for some geometries than for others. For example, all
spherical orbifolds are commensurable, but there are infinitely many commensurability classes
of hyperbolic orbifolds.

Commensurability classes are particularly relevant for the study of finite-volume hyperbolic 3-
manifolds and orbifolds, where classification has often been centered around notions of volume.
Complementing this, commensurability classes are transverse to volume. Selberg’s lemma states
that a finitely generated subgroup of GL(n,C) has a torsion-free subgroup of finite index.
Therefore, all hyperbolic orbifolds are finitely covered by manifolds and there are manifolds
in every commensurability class. We define the volume of a hyperbolic orbifold to be 1/d the
volume of a d-fold cover which is a manifold. By rigidity, volume is a topological invariant
and volumes of commensurable manifolds are rationally related. There has also been recent
progress in understanding the commensurator of infinite volume hyperbolic manifolds [11].
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Henceforth, we will mainly be concerned with commensurability classes of finite volume hyper-
bolic 3-orbifolds. In this case, we can characterize commensurability of hyperbolic orbifolds by
commensurability of subgroups of PSL(2,C). By Mostow-Prasad rigidity, M1

∼= H3/Γ1 and
M2
∼= H3/Γ2 are commensurable if and only if Γ1 and a conjugate of Γ2 share a finite index

subgroup. Following [13, Definition 1.3.4] we say that the groups Γ1 and Γ2 are commensurable
in the wide sense in PSL(2,C).

Let Γ be a finitely generated Kleinian group with finite co-volume. Then by rigidity, the trace
field of Γ is a topological invariant of the hyperbolic orbifold H3/Γ, as mentioned in Section
1. It is also a finite degree extension of Q [13, Theorem 3.1.2]. It is not, however, an invariant
of the commensurability class. In the above example of the figure-8 knot complement and the
orbifold which is the quotient by the strong inversion, it can be seen that the trace field of the
quotient orbifold contains i where the trace field of the figure-8 knot complement is Q(

√
−3),

which does not contain i. However, the invariant trace field kΓ = Q(tr(γ2)|γ ∈ Γ) is an
invariant of the commensurability class [13, p 117]. Often we will restrict to hyperbolic knot
complements and in this case the trace field is the same as the invariant trace field [17].

An equivalent way to define the invariant trace field for a cusped finite-volume hyperbolic man-
ifold with an ideal triangulation is the field generated by the cross-ratios of all ideal tetrahedra,
or the shapes of all the tetrahedra [13, Section 5.5]. This suggests that the cusp field is a
subfield of the invariant trace field and indeed this is the case.

Probably the most useful invariant of a commensurability class is the commensurator. Two
subgroups A and B of a group are commensurable if their intersection is finite index in each.

Definition 2.2. The commensurator of a Kleinian group Γ is

C+(Γ) = {g ∈ PSL(2,C)| gΓg−1and Γ are commensurable}.

The geometry of the commensurator is dramatically different for arithmetic and non-arithmetic
Kleinian groups.

A Kleinian group Γ is arithmetic if it is commensurable with a k-embedding into M2(C) of the
group of norm 1 elements of an order of a quaternion algebra A over k where A ramifies at all
real places and where k is a number field with one complex place. (See [13, Definition 8.2.1]
and the discussion therein.) A useful characterization is that a non-cocompact Kleinian group
Γ is arithmetic if and only if a conjugate of Γ is commensurable with a Bianchi group. These
are the groups PSL(2, Od), where Od is the ring of integers in Q(

√
−d). We will say that the

orbifold H3/Γ is arithmetic when Γ is arithmetic. For example, the complement of the figure-8
knot described above is arithmetic and furthermore this is the only arithmetic knot complement
in S3 [18].

Let Γ be a finitely generated Kleinian group with finite co-volume. Margulis’s theorem (which
holds in more generality) implies that either Γ is finite index in C+(Γ), or C+(Γ) is dense in
PSL(2,C). Furthermore, C+(Γ) is dense exactly when Γ is arithmetic.
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Lemma 2.3. For finite co-volume Kleinian groups Γ1 and Γ2, the orbifolds H3/Γ1 and H3/Γ2

are commensurable if and only if the commensurators of Γ1 and Γ2 are conjugate in PSL(2,C).

Proof. The fact that commensurable orbifolds have conjugate commensurators follows directly
from Mostow-Prasad rigidity and the definition. For non-arithmetic orbifolds, Margulis’s the-
orem says that Γ1 and Γ2 are finite index in their commensurators, so if their commensurators
are conjugate, the orbifolds H3/Γ1 and H3/Γ2 are commensurable. For the arithmetic case,
the commensurators of Γ1 and Γ2 are the set of invertible elements in the quaternion algebra
defined by the trace field. (See [13].) Therefore we may assume, after conjugation, that Γ1 and
Γ2 are contained in two orders O1 and O2 in the same quaternion algebra. Furthermore, the
intersection of two orders is an order so we may assume that O1 ⊂ O2. Since we are considering
groups up to commensurability and conjugation, the result follows from the fact that if O′1 and
O′2 are the groups of elements of norm 1 in each order, then O′1 is finite index in O′2. �

Thus, for a non-arithmetic finite-covolume Kleinian group Γ, the commensurator C+(Γ) is
the maximal element in the commensurability class of Γ. In this case, the commensurator
corresponds to an orbifold H3/C+(Γ) which is the minimal element in the commensurability
class of O = H3/Γ. In other words every orbifold commensurable with O finitely covers
H3/C+(Γ). Thus two non-arithmetic finite-volume hyperbolic orbifolds have a finite sheeted-
cover exactly when they finitely cover a common orbifold. On a related note, it is shown in [4]
that a hyperbolic fibered commensurability class contains a unique minimal element.

3. Hidden Symmetries

Symmetries of a hyperbolic manifold M and symmetries between finite covers of M will play
a very important role in understanding the commensurability class of M . Recall that for a
Kleinian group Γ, the normalizer of Γ is

N+(Γ) = {g ∈ PSL(2,C)|gΓg−1 = Γ}.

Any self-isomorphism of a finite volume hyperbolic manifold M = H3/Γ yields an automor-
phism of Γ which by Mostow-Prasad rigidity is realized by conjugation. The fundamental
group Γ ≤ N+(Γ) and these conjugations are realized by a change of base point. Therefore,
Isom+(H3/Γ) ∼= N+(Γ)/Γ.

The hyperbolic orbifold H3/N+(Γ) may or may not be minimal in the commensurability class
of H3/Γ, and we distinguish between the two cases below. Clearly, N+(Γ) ≤ C+(Γ).

Definition 3.1. Let Γ be a finite co-volume Kleinian group. If N+(Γ) is strictly smaller than
C+(Γ), then Γ (and H3/Γ) are said to have hidden symmetries.

If S3 \K ∼= H3 admits hidden symmetries, then we also say that K admits hidden symmetries.
The elements of the commensurator correspond to isometries between finite-sheeted covers of
H3/Γ. Indeed, if gΓg−1 ∩ Γ is a finite-index subgroup of Γ, then conjugation by g−1 gives an
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isomorphism between the subgroups gΓg−1 ∩ Γ and Γ ∩ g−1Γg, which is an isometry between
the corresponding finite-sheeted covers. If φ : H3/Γ1 → H3/Γ2 is an isometry between finite-
sheeted covers, then it is realized by conjugation by g, for some g ∈ PSL(2,C) by Mostow-Prasad
rigidity. Γ and gΓg−1 have the same finite co-volume, and their intersection has finite covolume.
Therefore, Γ and gΓg−1 are commensurable.

Any isometry of H3/Γ will permute the finite-sheeted covers of H3/Γ. Thus, if the commensura-
tor of Γ is strictly larger than the normalizer, there is an isometry between finite-sheeted covers
of H3/Γ which is not realized by an isometry of H3/Γ. Hence the term “hidden symmetries”. In
the non-arithmetic case, by Margulis’s theorem above, Γ is finite-index in C+(Γ). Therefore, for
every g ∈ C+(Γ), there is a k such that gk ∈ Γ. Hence Γ′ = Γ∩gΓg−1∩g2Γg−2...∩g(k−1)Γg−(k−1)

is normalized by g for some k. Thus the cover corresponding to Γ′ exhibits a hidden symme-
try. In the arithmetic case, there are infinitely many hidden symmetries, see [9]. In the non-
arithmetic case, there is a finite-sheeted cover of H3/Γ which exhibits all the hidden symmetries
of H3/Γ, namely H3/Γ′, where Γ′ is the intersection of all the conjugates of Γ in C+(Γ).

Goodman, Heard and Hodgson [8] have recently obtained a characterization of the commensu-
rator of cusped hyperbolic manifolds. Their characterization is as follows. A horoball packing
is a collection of disjoint horoballs in H3. A cusp neighborhood is any neighborhood of the
cusp that lifts to a horoball packing. They show [8, Lemma 2.3] that two hyperbolic cusped
orbifolds of finite volume cover a common orbifold if and only if they admit choices of cusp
neighborhoods lifting to isometric horoball packings. Furthermore, the commensurator of a
finite-covolume non-arithmetic Kleinian group Γ is the maximal symmetry group of a horoball
packing, amongst those which are lifts of cusp neighborhoods in H3/Γ. Equivalently, this is the
maximal symmetry group of a tiling of H3 amongst those which are obtained by lifting canoni-
cal cell decompositions of H3/Γ. Using this, they are able to compute the commensurators for
a large number of cusped hyperbolic orbifolds and to detect the presence of hidden symmetries,
by comparing the commensurator with the normalizer. In particular, their computations yield
that out of all hyperbolic knots up to 12 crossings, there are only two whose complements ad-
mit hidden symmetries. These are the two dodecahedral knots of Aitchison and Rubinstein [1].
These are the only two knots whose complements decompose into two regular ideal hyperbolic
dodecahedra. They are commensurable, and one is fibered while the other is not. Also the
knots have different genus and are amphichiral. This never happens for commensurable knots
which do not admit hidden symmetries, see [2].

A non-arithmetic hyperbolic 3-orbifold H3/Γ admits hidden symmetries if and only if it non-
normally covers a finite orbifold, since in this case the orbifold H3/N+(Γ) is not the mini-
mal element in the commensurability class. We can understand the commensurator orbifold
H3/C+(Γ) in part by looking at its cusp cross section, which is a Euclidean 2-orbifold. The
symmetry group of a hyperbolic knot complement is either cyclic or dihedral, since it is finite,
and any symmetry of the complement will take a minimal genus Seifert surface (along with the
canonical longitude) to a minimal genus Seifert surface. Therefore, any normal covering of an
orbifold by a knot complement has a torus or a S2(2, 2, 2, 2) cusp cross-section. Conversely, if a
knot complement covers an orbifold with a torus or S2(2, 2, 2, 2) cusp cross-section, the covering
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is normal, [18, 7]. The orientable Euclidean orbifolds which are not a torus or S2(2, 2, 2, 2) are
S2(2, 4, 4), S2(3, 3, 3) and S2(2, 3, 6). These are rigid, meaning that their moduli spaces are
trivial. Thus Neumann and Reid show:

Lemma 3.2. [16, Proposition 9.1] The following are equivalent for a hyperbolic knot comple-
ment H3/Γ which is not the figure-8 knot complement.

(1) The knot complement admits hidden symmetries.
(2) H3/C+(Γ) has a rigid Euclidean cusp cross-section.
(3) The knot complement non-normally covers some orbifold.

Since a rigid Euclidean 2-orbifold cannot be deformed, the cusp field of an orbifold with one
cusp which has a rigid cusp cross-section is either Q(

√
−3) (when the cusp cross-section is

S2(3, 3, 3) or S2(2, 3, 6)) or Q(i) (when the cusp cross-section is S2(2, 4, 4)). Furthermore, any
hyperbolic orbifold which covers an orbifold with one cusp with a rigid cusp-cross section has
the same cusp field. Therefore, a knot complement which admits hidden symmetries has cusp
field Q(

√
−3) or Q(i). Although it is not known exactly how cusp fields are distributed amongst

hyperbolic knot complements, it is suspected that these cusp fields are not any more prevalent
than others. This, along with the experimental results above, suggests that hyperbolic knots
with hidden symmetries are extremely rare.

4. knot complements

Although understanding commensurability classes for arbitrary hyperbolic 3-manifolds is quite
difficult, the situation for hyperbolic knot complements appears to be much easier. If the knot
complements S3 \K and S3 \K ′ are commensurable, we say that the knots are commensurable
and write K ∼ K ′. There are finitely many knots K ′ with K ∼ K ′ when K (equivalently
K ′) does not admit hidden symmetries. In this case, the commensurator quotient orbifold
will have a flexible cusp, and any filling of the knot complement will cover a filling of the
commensurator quotient. In particular, the S3 filling of the knot complement will cover a
filling of the orbifold which necessarily has finite fundamental group. There are finitely many
fillings of a hyperbolic orbifold which yield orbifolds with finite fundamental group, hence there
can be only finitely many knot complements in the commensurability class of a knot which
does not admit hidden symmetries. As of this writing, it is not known if there can be infinitely
many knots in the commensurability class of a knot which admits hidden symmetries, or even
if the commensurability class of the two dodecahedral knots contains infinitely many knot
complements, or if there are infinitely many different commensurability classes with hidden
symmetries.

However, we have the following result which sheds some light on this situation:

Theorem 4.1. (Also [2, Corollary 4.6]) If O is the minimal element of a non-arithmetic com-
mensurability class which contains a knot complement S3 \K then the underlying space of O is
either an open ball or the complement of a knot in a lens space.
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Proof. Let Ô denote the corresponding orbifold with boundary obtained by truncating the cusp.
Since ∂Ô is an orientable Euclidean orbifold, it is either a torus or has underlying space S2.
When ∂Ô is a torus, the covering S3 \N(K)→ Ô is normal by [7] and [18, Lemma 4]. Analysis
of the action of the covering group in [2, Lemma 4.5] yields that the underlying space of Ô is the
exterior of knot in a lens space. The case where ∂Ô has underlying space S2 is an observation
of M. Kapovich. The fundamental group S3 \ N(K) is normally generated by the meridian
and S3 \ N(K) surjects the underlying space of Ô. The underlying space of ∂Ô has trivial
fundamental group, so the image of π1(S3 \N(K)) is trivial in the map S3 \N(K)→ Ô → |Ô|.
Then if Ô has any non-trivial cover (for example its universal cover) this cover has more than
one boundary component and the map from S3 \N(K) to |Ô| lifts, a contradiction. Thus the
underlying space of the orbifold Ô is a ball since there are no fake 3-balls by Perelman [15].
Therefore, in this case, the underlying space of O is an open ball. �

There are several known ways for hyperbolic knots to be commensurable. The first is the classic
(but rare) situation when a knot complement S3\K admits a Dehn filling such that the resulting
manifold S3 \N(K)(r) is a lens space. In this case the universal cover of the filled manifold is
S3, with cyclic covering group. Since a cyclic cover of a knot complement is unique and has one
cusp, the pre-image of K in the covering S3 → S3 \N(K)(r) has one component K ′ and this
induces a covering S3\K ′ → S3\K. Thus, if the covering and the knot are both non-trivial, then
K ∼ K ′. In [7] it is proven that a knot complement covers another knot complement if and only
if the covered knot admits a cyclic surgery. By the cyclic surgery theorem [6], a hyperbolic knot
can admit at most three cyclic surgeries. By volume considerations, different cyclic surgeries
will correspond to different knot complements in the commensurability class by the construction
above. Thus, we can only obtain three knot complements in a commensurability class using
this method. There is also a family of commensurable pairs of knot complements given by
Walter Neumann. (See [8, 2.2] for a description.) Each pair turns out to cyclically cover a
common orbifold. In addition, there is one example of a pair of knot complements that non-
normally cover a common orbifold, the pair of dodecahedral knots discussed above. This led
to the following conjecture. Let K be a hyperbolic knot and let C(K) denote the set of knots
commensurable with K.

Conjecture 4.2. [19] |C(K)| ≤ 3.

This conjecture has been verified in a number of cases, including all hyperbolic two-bridge
knot complements [19], (−2, 3, n)-pretzel knot complements [12], and for an infinite family of
hyperbolic knot complements constructed by Hoffman [10] each of which has exactly three
knots in its commensurability class. In each of these cases, the knots in question are shown
not to admit hidden symmetries by proving that neither Q(i) nor Q(

√
−3) can be a subfield of

the invariant trace field. This implies that the knots do not admit hidden symmetries via the
Neumann and Reid characterization discussed above.

In [2], conjecture 4.2 is proven in the “generic” case. Namely,

Theorem 4.3. [2, Theorem 1.2] If K is a hyperbolic knot whose complement does not admit
hidden symmetries then |C(K)| ≤ 3.
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To prove this, it is shown that in the case when K and K ′ are commensurable and do not admit
hidden symmetries, then the knot complements cyclically cover a common orbifold (as in Walter
Neumann’s examples). This generalizes the situation where a knot complement cyclically covers
another knot complement, as in the case of Berge knots. An orbi-lens space is the quotient of S3

by a finite cyclic group. The orbifold which is cyclically covered by the two knot complements
is the complement of a knot in an orbi-lens space. As another example of an orbifold, we give
an example of an orbi-lens space. Here the ramification locus is the cores of a genus 1 Heegaard
splitting of the underlying space, which is a lens space.

5: We consider S3 as the unit 3-sphere in C2. Then let G be the group of isometries of
C2 generated by φ where φ(z, w) = (e

2πi
6 z, e

4πi
15 w). Then G is cyclic of order 30 and

leaves the unit three-sphere invariant. φ6 fixes the z axis of S3, φ15 fixes the w axis
and φ10 acts freely. Thus the quotient orbifold L has underlying space |L| a lens space
with fundamental group of order 3. The ramification locus is two circles labeled 5 and
2 which are the cores of a genus 1 Heegaard splitting of |L|.

We conclude by remarking that understanding commensurability and hidden symmetries can
lead to information about the symmetries of hyperbolic knot complements. For example, we
have the following:

Lemma 4.4. [2] If a hyperbolic knot K does not admit hidden symmetries and |C(K)| > 1,
then K is not amphichiral. If in addition K is periodic, then it must be strongly invertible.
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